

MIMICRY MASTERS: NATURE'S DECEPTIVE HUNTERS

There is a genus of small spiders in the tropics which feed on ants, and they are exactly like ants themselves, which no doubt gives them more opportunity of seizing their prey; and found on the Amazon a species of Mantis which exactly resembled the white ants which it fed upon, as well as several species of crickets (Scaphura), which resembled in a wonderful manner different sand-wasps of large size, which are constantly on the search for crickets with which to provision their nests. Perhaps the most wonderful case of all is the large caterpillar mentioned by which startled him by its close resemblance to a small snake. The first three segments behind the head were dilatable at the will of the insect, and had on each side a large black pupillated spot, which resembled the eye of the reptile. Moreover, it resembled a poisonous viper, not a harmless species of snake, as was proved by the imitation of keeled scales on the crown produced by the recumbent feet, as the caterpillar threw itself backward! The attitudes of many of the tropical spiders are most extraordinary and deceptive, but little attention has been paid to them. They often mimic other insects, and some, assures us, are exactly like flower buds, and take their station in the axils of leaves, where they remain motionless waiting for their prey. Cases of Mimicry among the Vertebrata. Having thus shown how varied and extraordinary are the modes in which mimicry occurs among insects, we have now to enquire if anything of the same kind is to be observed among vertebrated animals. When we consider all the conditions necessary to produce a good deceptive imitation, we shall see at once that such can very rarely occur in the higher animals, since they possess none of those facilities for the almost infinite modifications of external form which exist in the very nature of insect organization. The outer covering of insects being more or less solid and horny, they are capable of almost any amount of change of form and appearance without any essential modification internally. In many groups the wings give much of the character, and these organs may be much modified both in form and colour without interfering with their special functions. Again, the number of species of insects is so great, and there is such diversity of form and proportion in every group, that the chances of an accidental approximation in size, form, and colour, of one insect to another of a different group, are very considerable; and it is these chance approximations that furnish the basis of mimicry, to be continually advanced and perfected by the survival of those varieties only which tend in the right direction. In the Vertebrata, on the contrary, the skeleton being internal the external form depends almost entirely on the proportions and arrangement of that skeleton, which again is strictly adapted to the functions necessary for the wellbeing of the animal. The form cannot therefore be rapidly modified by variation, and the thin and flexible integument will not admit of the development of such strange protuberances as occur continually in insects. The number of species of each group in the same country is also comparatively small, and thus the chances of that first accidental resemblance which is necessary for natural selection to work upon are much diminished. We can hardly see the possibility of a mimicry by which the elk could escape from the wolf, or the buffalo from the tiger. There is, however, in one group of Vertebrata such a general similarity of form, that a very slight modification, if accompanied by identity of colour, would produce the necessary amount of resemblance; and at the same time there exist a number of species which it would be advantageous for others to resemble, since they are armed with the most fatal weapons of offence. We accordingly find that reptiles furnish us with a very remarkable and instructive case of true mimicry. Mimicry among Snakes. There are in tropical America a number of venomous snakes of the genus *Elaps*, which are ornamented with brilliant colours disposed in a peculiar manner. The ground colour is generally bright red, on which are black bands of various widths and sometimes divided into two or three by yellow rings. Now, in the same country are found several genera of harmless snakes, having no affinity whatever with the above, but coloured exactly the same. For example, the poisonous *Elaps fulvius* often occurs in Guatemala with simple black bands on a coral-red ground; and in the same country is found the harmless snake *Pliocerus equalis*, coloured and banded in identically the same manner.

A variety of *Elaps corallinus* has the black bands narrowly bordered with yellow on the same red ground colour, and a harmless snake, *Homalocranium semicinctum*, has exactly the same markings, and both are found in Mexico. The deadly *Elaps lemniscatus* has the black bands very broad, and each of them divided into three by narrow yellow rings; and this again is exactly copied by a harmless snake, *Pliocerus elapoides*, which is found along with its model in Mexico. But, more remarkable still, there is in South America a third group of snakes, the genus *Oxyrhopus*, doubtfully venomous, and having no immediate affinity with either of the preceding, which has also the same curious distribution of colours, namely, variously disposed rings of red, yellow, and black; and there are some cases in which species of all three of these groups similarly marked inhabit the same district. For example, *Elaps mipartitus* has single black rings very close together. It inhabits the west side of the Andes, and in the same districts occur *Pliocerus euryzonus* and *Oxyrhopus petolarius*, which exactly copy its pattern. In Brazil *Elaps lemniscatus* is copied by *Oxyrhopus trigeminus*, both having black rings disposed in threes. In *Elaps hemiprichii* the ground colour appears to be black, with alternations of two narrow yellow bands and a broader red one; and of this pattern again we have an exact double in *Oxyrhopus formosus*, both being found in many localities of tropical South America. What adds much to the extraordinary character of these resemblances is the fact, that nowhere in the world but in America are there any snakes at all which have this style of colouring. of the British Museum, who has kindly furnished some of the details here referred to, assures me that this is the case; and that red, black, and yellow rings occur together on no other snakes in the world but on *Elaps* and the species which so closely resemble it. In all these cases, the size and form as well as the colouration, are so much alike, that none but a naturalist would distinguish the harmless from the poisonous species. Many of the small tree-frogs are no doubt also mimickers. When seen in their natural attitudes, I have been often unable to distinguish them from beetles or other insects sitting upon leaves, but regret to say I neglected to observe what species or groups they most resembled, and the subject does not yet seem to have attracted the attention of naturalists abroad. Mimicry among Birds. In the class of birds there are a number of cases that make some approach to mimicry, such as the resemblance of the cuckoos, a weak and defenceless group of birds, to hawks and *Gallinaceæ*. There is, however, one example which goes much further than this, and seems to be of exactly the same nature as the many cases of insect mimicry which have been already given. In Australia and the Moluccas there is a genus of honeysuckers called *Tropidorhynchus*, good sized birds, very strong and active, having powerful grasping claws and long, curved, sharp beaks. They assemble together in groups and small flocks, and they have a very loud bawling note, which can be heard at a great distance, and serves to collect a number together in time of danger. They are very plentiful and very pugnacious, frequently driving away crows, and even hawks, which perch on a tree where a few of them are assembled. They are all of rather dull and obscure colours. Now in the same countries there is a group of orioles, forming the genus *Mimeta*, much weaker birds, which have lost the gay colouring of their allies the golden orioles, being usually olive-green or brown; and in several cases these most curiously resemble the *Tropidorhynchus* of the same island. For example, in the island of Bouru is found the *Tropidorhynchus bouruensis*, of a dull earthy colour, and the *Mimeta bouruensis*, which resembles it in the following particulars:—The upper and under surfaces of the two birds are exactly of the same tints of dark and light brown; the *Tropidorhynchus* has a large bare black patch round the eyes; this is copied in the *Mimeta* by a patch of black feathers. The top of the head of the *Tropidorhynchus* has a scaly appearance from the narrow scale-formed feathers, which are imitated by the broader feathers of the *Mimeta* having a dusky line down each. The *Tropidorhynchus* has a pale ruff formed of curious recurved feathers on the nape (which has given the whole genus the name of Friar birds); this is represented in the *Mimeta* by a pale band in the same position.

Lastly, the bill of the *Tropidorhynchus* is raised into a protuberant keel at the base, and the *Mimeta* has the same character, although it is not a common one in the genus. The result is, that on a superficial examination the birds are identical, although they have important structural differences, and cannot be placed near each other in any natural arrangement. As a proof that the resemblance is really deceptive, it may be mentioned that the *Mimeta* is figured and described as a honeysucker in the costly "Voyage de l'Astrolabe," under the name of *Philedon bouruensis*! Passing to the island of Ceram, we find allied species of both genera. The *Tropidorhynchus subcornutus* is of an earthy brown colour washed with yellow ochre, with bare orbits, dusky cheeks, and the usual pale recurved nape-ruff. The *Mimeta forsteni* is absolutely identical in the tints of every part of the body, the details of which are imitated in the same manner as in the Bouru birds already described. In two other islands there is an approximation towards mimicry, although it is not so perfect as in the two preceding cases. In Timor the *Tropidorhynchus timoriensis* is of the usual earthy brown above, with the naperuff very prominent, the cheeks black, the throat nearly white, and the whole under surface pale whitish brown. These various tints are all well reproduced in *Mimeta virescens*, the chief want of exact imitation being that the throat and breast of the *Tropidorhynchus* has a very scaly appearance, being covered with rigid pointed feathers which are not imitated in the *Mimeta*, although there are signs of faint dusky spots which may easily furnish the groundwork of a more exact imitation by the continued survival of favourable variations in the same direction. There is also a large knob at the base of the bill of the *Tropidorhynchus* which is not at all imitated by the *Mimeta*. In the island of Morty (north of Gilolo) there exists the *Tropidorhynchus fuscicapillus*, of a dark sooty brown colour, especially on the head, while the under parts are rather lighter, and the characteristic ruff of the nape is wanting. Now it is curious that in the adjacent island of Gilolo should be found the *Mimeta phæochromus*, the upper surface of which is of exactly the same dark sooty tint as the *Tropidorhynchus*, and is the only known species that is of such a dark colour. The under side is not quite light enough, but it is a good approximation. This *Mimeta* is a rare bird, and may very probably exist in Morty, though not yet found there; or, on the other hand, recent changes in physical geography may have led to the restriction of the *Tropidorhynchus* to that island, where it is very common. Here, then, we have two cases of perfect mimicry and two others of good approximation, occurring between species of the same two genera of birds; and in three of these cases the pairs that resemble each other are found together in the same island, and to which they are peculiar. In all these cases the *Tropidorhynchus* is rather larger than the *Mimeta*, but the difference is not beyond the limits of variation in species, and the two genera are somewhat alike in form and proportion. There are, no doubt, some special enemies by which many small birds are attacked, but which are afraid of the *Tropidorhynchus* (probably some of the hawks), and thus it becomes advantageous for the weak *Mimeta* to resemble the strong, pugnacious, noisy, and very abundant *Tropidorhynchus*. My friend, Mr. Osbert Salvin, has given me another interesting case of bird mimicry. In the neighbourhood of Rio Janeiro is found an insect-eating hawk (*Harpagus diodon*), and in the same district a bird-eating hawk (*Accipiter pileatus*) which closely resembles it. Both are of the same ashy tint beneath, with the thighs and under wing-coverts reddish brown, so that when on the wing and seen from below they are undistinguishable. The curious point, however, is that the *Accipiter* has a much wider range than the *Harpagus*, and in the regions where the insect-eating species is not found it no longer resembles it, the under wing-coverts varying to white; thus indicating that the red-brown colour is kept true by its being useful to the *Accipiter* to be mistaken for the insect-eating species, which birds have learnt not to be afraid of. Mimicry among Mammals. Among the *Mammalia* the only case which may be true mimicry is that of the insectivorous genus *Cladobates*, found in the Malay countries, several species of which very closely resemble squirrels.

The size is about the same, the long bushy tail is carried in the same way, and the colours are very similar. In this case the use of the resemblance must be to enable the Cladobates to approach the insects or small birds on which it feeds, under the disguise of the harmless fruit-eating squirrel. Objections to Theory of Mimicry. Having now completed our survey of the most prominent and remarkable cases of mimicry that have yet been noticed, we must say something of the objections that have been made to the theory of their production given by , and which we have endeavoured to illustrate and enforce in the preceding pages. Three counter explanations have been proposed. Professor Westwood admits the fact of the mimicry and its probable use to the insect, but maintains that each species was created a mimic for the purpose of the protection thus afforded it. in his paper on the "Disguises of Nature," inclines to the opinion that similar conditions of food and of surrounding circumstances have acted in some unknown way to produce the resemblances; and when the subject was discussed before the Entomological Society of London, a third objection was added—that heredity or the reversion to ancestral types of form and colouration, might have produced many of the cases of mimicry. Against the special creation of mimicking species there are all the objections and difficulties in the way of special creation in other cases, with the addition of a few that are peculiar to it. The most obvious is, that we have gradations of mimicry and of protective resemblance—a fact which is strongly suggestive of a natural process having been at work. Another very serious objection is, that as mimicry has been shown to be useful only to those species and groups which are rare and probably dying out, and would cease to have any effect should the proportionate abundance of the two species be reversed, it follows that on the special-creation theory the one species must have been created plentiful, the other rare; and, notwithstanding the many causes that continually tend to alter the proportions of species, these two species must have always been specially maintained at their respective proportions, or the very purpose for which they each received their peculiar characteristics would have completely failed. A third difficulty is, that although it is very easy to understand how mimicry may be brought about by variation and the survival of the fittest, it seems a very strange thing for a Creator to protect an animal by making it imitate another, when the very assumption of a Creator implies his power to create it so as to require no such circuitous protection. These appear to be fatal objections to the application of the special-creation theory to this particular case. The other two supposed explanations, which may be shortly expressed as the theories of "similar conditions" and of "heredity," agree in making mimicry, where it exists, an adventitious circumstance not necessarily connected with the well-being of the mimicking species. But several of the most striking and most constant facts which have been adduced, directly contradict both those hypotheses. The law that mimicry is confined to a few groups only is one of these, for "similar conditions" must act more or less on all groups in a limited region, and "heredity" must influence all groups related to each other in an equal degree. Again, the general fact that those species which mimic others are rare, while those which are imitated are abundant, is in no way explained by either of these theories, any more than is the frequent occurrence of some palpable mode of protection in the imitated species. "Reversion to an ancestral type" no way explains why the imitator and the imitated always inhabit the very same district, whereas allied forms of every degree of nearness and remoteness generally inhabit different countries, and often different quarters of the globe; and neither it, nor "similar conditions," will account for the likeness between species of distinct groups being superficial only—a disguise, not a true resemblance; for the imitation of bark, of leaves, of sticks, of dung; for the resemblance between species in different orders, and even different classes and sub-kingdoms; and finally, for the graduated series of the phenomena, beginning with a general harmony and adaptation of tint in autumn and winter moths and in arctic and desert animals, and ending with those complete cases of detailed mimicry which not only deceive predaceous animals, but puzzle the most experienced insect collectors and the most learned entomologists.

Mimicry by Female Insects only. But there is yet another series of phenomena connected with this subject, which considerably strengthens the view here adopted, while it seems quite incompatible with either of the other hypotheses; namely, the relation of protective colouring and mimicry to the sexual differences of animals. It will be clear to every one that if two animals, which as regards "external conditions" and "hereditary descent," are exactly alike, yet differ remarkably in colouration, one resembling a protected species and the other not, the resemblance that exists in one only can hardly be imputed to the influence of external conditions or as the effect of heredity. And if, further, it can be proved that the one requires protection more than the other, and that in several cases it is that one which mimics the protected species, while the one that least requires protection never does so, it will afford very strong corroborative evidence that there is a real connexion between the necessity for protection and the phenomenon of mimicry. Now the sexes of insects offer us a test of the nature here indicated, and appear to furnish one of the most conclusive arguments in favour of the theory that the phenomena termed "mimicry" are produced by natural selection. The comparative importance of the sexes varies much in different classes of animals. In the higher vertebrates, where the number of young produced at a birth is small and the same individuals breed many years in succession, the preservation of both sexes is almost equally important. In all the numerous cases in which the male protects the female and her offspring, or helps to supply them with food, his importance in the economy of nature is proportionately increased, though it is never perhaps quite equal to that of the female. In insects the case is very different; they pair but once in their lives, and the prolonged existence of the male is in most cases quite unnecessary for the continuance of the race. The female, however, must continue to exist long enough to deposit her eggs in a place adapted for the development and growth of the progeny. Hence there is a wide difference in the need for protection in the two sexes; and we should, therefore, expect to find that in some cases the special protection given to the female was in the male less in amount or altogether wanting. The facts entirely confirm this expectation. In the spectre insects (Phasmidæ) it is often the females alone that so strikingly resemble leaves, while the males show only a rude approximation. The male *Diadema misippus* is a very handsome and conspicuous butterfly, without a sign of protective or imitative colouring, while the female is entirely unlike her partner, and is one of the most wonderful cases of mimicry on record, resembling most accurately the common *Danais chrysippus*, in whose company it is often found. So in several species of South American *Pieris*, the males are white and black, of a similar type of colouring to our own "cabbage" butterflies, while the females are rich yellow and buff, spotted and marked so as exactly to resemble species of *Heliconidæ* with which they associate in the forest. In the Malay archipelago is found a *Diadema* which had always been considered a male insect on account of its glossy metallic-blue tints, while its companion of sober brown was looked upon as the female. I discovered, however, that the reverse is the case, and that the rich and glossy colours of the female are imitative and protective, since they cause her exactly to resemble the common *Euplœa midamus* of the same regions, a species which has been already mentioned in this essay as mimicked by another butterfly, *Papilio paradoxa*. I have since named this interesting species *Diadema anomala*. In this case, and in that of *Diadema misippus*, there is no difference in the habits of the two sexes, which fly in similar localities; so that the influence of "external conditions" cannot be invoked here as it has been in the case of the South American *Pieris pyrrha* and allies, where the white males frequent open sunny places, while the *Heliconia*- like females haunt the shades of the forest. We may impute to the same general cause (the greater need of protection for the female, owing to her weaker flight, greater exposure to attack, and supreme importance)—the fact of the colours of female insects being so very generally duller and less conspicuous than those of the other sex. And that it is chiefly due to this cause rather than to what terms "sexual selection" appears to be shown by the otherwise inexplicable fact, that in the groups which have a protection of any kind independent of concealment, sexual differences of colour are either quite wanting or slightly developed.

The Heliconidæ and Danaidæ, protected by a disagreeable flavour, have the females as bright and conspicuous as the males, and very rarely differing at all from them. The stinging Hymenoptera have the two sexes equally well coloured. The Carabidæ, the Coccinellidæ, Chrysomelidæ, and the Telephori have both sexes equally conspicuous, and seldom differing in colours. The brilliant Curculios, which are protected by their hardness, are brilliant in both sexes. Lastly, the glittering Cetoniadæ and Buprestidæ, which seem to be protected by their hard and polished coats, their rapid motions, and peculiar habits, present few sexual differences of colour, while sexual selection has often manifested itself by structural differences, such as horns, spines, or other processes. Cause of the dull Colours of Female Birds. The same law manifests itself in Birds. The female while sitting on her eggs requires protection by concealment to a much greater extent than the male; and we accordingly find that in a large majority of the cases in which the male birds are distinguished by unusual brilliancy of plumage, the females are much more obscure, and often remarkably plain-coloured. The exceptions are such as eminently to prove the rule, for in most cases we can see a very good reason for them. In particular, there are a few instances among wading and gallinaceous birds in which the female has decidedly more brilliant colours than the male; but it is a most curious and interesting fact that in most if not all these cases the males sit upon the eggs; so that this exception to the usual rule almost demonstrates that it is because the process of incubation is at once very important and very dangerous, that the protection of obscure colouring is developed. The most striking example is that of the gray phalarope (*Phalaropus fulicarius*). When in winter plumage, the sexes of this bird are alike in colouration, but in summer the female is much the most conspicuous, having a black head, dark wings, and reddish-brown back, while the male is nearly uniform brown, with dusky spots. In his "Birds of Great Britain" figures the two sexes in both winter and summer plumage, and remarks on the strange peculiarity of the usual colours of the two sexes being reversed, and also on the still more curious fact that the "male alone sits on the eggs," which are deposited on the bare ground. In another British bird, the dotterell, the female is also larger and more brightly-coloured than the male; and it seems to be proved that the males assist in incubation even if they do not perform it entirely, for tells us, "that they have been shot with the breast bare of feathers, caused by sitting on the eggs." The small quail-like birds forming the genus *Turnix* have also generally large and bright-coloured females, and we are told by in his "Birds of India" that "the natives report that during the breeding season the females desert their eggs and associate in flocks while the males are employed in hatching the eggs." It is also an ascertained fact, that the females are more bold and pugnacious than the males. A further confirmation of this view is to be found in the fact (not hitherto noticed) that in a large majority of the cases in which bright colours exist in both sexes incubation takes place in a dark hole or in a dome-shaped nest. Female kingfishers are often equally brilliant with the male, and they build in holes in banks. Bee-eaters, trogons, motmots, and toucans, all build in holes, and in none is there any difference in the sexes, although they are, without exception, showy birds. Parrots build in holes in trees, and in the majority of cases they present no marked sexual difference tending to concealment of the female. Woodpeckers are in the same category, since though the sexes often differ in colour, the female is not generally less conspicuous than the male. Wagtails and titmice build concealed nests, and the females are nearly as gay as their mates. The female of the pretty Australian bird *Pardalotus punctatus*, is very conspicuously spotted on the upper surface, and it builds in a hole in the ground. The gay-coloured hang-nests (Icterinæ) and the equally brilliant tanagers may be well contrasted; for the former, concealed in their covered nests, present little or no sexual difference of colour—while the open-nested tanagers have the females dull-coloured and sometimes with almost protective tints. No doubt there are many individual exceptions to the rule here indicated, because many and various causes have combined to determine both the colouration and the habits of birds.

These have no doubt acted and re-acted on each other; and when conditions have changed one of these characters may often have become modified, while the other, though useless, may continue by hereditary descent an apparent exception to what otherwise seems a very general rule. The facts presented by the sexual differences of colour in birds and their mode of nesting, are on the whole in perfect harmony with that law of protective adaptation of colour and form, which appears to have checked to some extent the powerful action of sexual selection, and to have materially influenced the colouring of female birds, as it has undoubtedly done that of female insects. Use of the gaudy Colours of many Caterpillars. Since this essay was first published a very curious difficulty has been cleared up by the application of the general principle of protective colouring. Great numbers of caterpillars are so brilliantly marked and coloured as to be very conspicuous even at a considerable distance, and it has been noticed that such caterpillars seldom hide themselves. Other species, however, are green or brown, closely resembling the colours of the substances on which they feed, while others again imitate sticks, and stretch themselves out motionless from a twig so as to look like one of its branches. Now, as caterpillars form so large a part of the food of birds, it was not easy to understand why any of them should have such bright colours and markings as to make them specially visible. had put the case to me as a difficulty from another point of view, for he had arrived at the conclusion that brilliant colouration in the animal kingdom is mainly due to sexual selection, and this could not have acted in the case of sexless larvæ. Applying here the analogy of other insects, I reasoned, that since some caterpillars were evidently protected by their imitative colouring, and others by their spiny or hairy bodies, the bright colours of the rest must also be in some way useful to them. I further thought that as some butterflies and moths were greedily eaten by birds while others were distasteful to them, and these latter were mostly of conspicuous colours, so probably these brilliantly coloured caterpillars were distasteful, and therefore never eaten by birds. Distastefulness alone would however be of little service to caterpillars, because their soft and juicy bodies are so delicate, that if seized and afterwards rejected by a bird they would almost certainly be killed. Some constant and easily perceived signal was therefore necessary to serve as a warning to birds never to touch these uneatable kinds, and a very gaudy and conspicuous colouring with the habit of fully exposing themselves to view becomes such a signal, being in strong contrast with the green or brown tints and retiring habits of the eatable kinds. The subject was brought by me before the Entomological Society , in order that those members having opportunities for making observations might do so in the following summer; and I also wrote a letter to the Field newspaper, begging that some of its readers would co-operate in making observations on what insects were rejected by birds, at the same time fully explaining the great interest and scientific importance of the problem. It is a curious example of how few of the country readers of that paper are at all interested in questions of simple natural history, that I only obtained one answer from a gentleman in Cumberland, who gave me some interesting observations on the general dislike and abhorrence of all birds to the "Gooseberry Caterpillar," probably that of the Magpie-moth (*Abraxas grossulariata*). Neither young pheasants, partridges, nor wild-ducks could be induced to eat it, sparrows and finches never touched it, and all birds to whom he offered it rejected it with evident dread and abhorrence. It will be seen that these observations are confirmed by those of two members of the Entomological Society to whom we are indebted for more detailed information. In March, communicated a valuable series of observations made during many years, but more especially in the two preceding summers, in his aviary, containing the following birds of more or less insectivorous habits:—Robin, Yellow-Hammer, Reed-bunting, Bullfinch, Chaffinch, Crossbill, Thrush, Tree-Pipit, Siskin, and Redpoll. He found that hairy caterpillars were uniformly rejected; five distinct species were quite unnoticed by all his birds, and were allowed to crawl about the aviary for days with impunity. The spiny caterpillars of the Tortoiseshell and Peacock butterflies were equally rejected; but in both these cases thinks it is the taste, not the hairs or spines, that are disagreeable, because some very young caterpillars of a hairy species were rejected although no hairs were developed, and the smooth pupæ of the above-named butterflies were refused as persistently as the spined larvæ. In these cases, then, both hairs and spines would seem to be mere signs of uneatableness.

His next experiments were with those smooth gaily-coloured caterpillars which never conceal themselves, but on the contrary appear to court observation. Such are those of the Magpie moth (*Abraxas grossulariata*), whose caterpillar is conspicuously white and black spotted—the *Diloba cœruleocephala*, whose larvæ is pale yellow with a broad blue or green lateral band—the *Cucullia verbasci*, whose larvæ is greenish white with yellow bands and black spots, and *Anthrocera filipendulæ* (the six spot Burnet moth), whose caterpillar is yellow with black spots. These were given to the birds at various times, sometimes mixed with other kinds of larvæ which were greedily eaten, but they were in every case rejected apparently unnoticed, and were left to crawl about till they died. The next set of observations were on the dull-coloured and protected larvæ, and the results of numerous experiments are thus summarised by. "All caterpillars whose habits are nocturnal, which are dull coloured, with fleshy bodies and smooth skins, are eaten with the greatest avidity. Every species of green caterpillar is also much relished. All *Geometræ*, whose larvæ resemble twigs as they stand out from the plant on their anal prolegs, are invariably eaten." At the same meeting, of the British Museum, communicated the results of his observations with lizards, frogs, and spiders, which strikingly corroborate those of. Three green lizards (*Lacerta viridis*) which he kept for several years, were very voracious, eating all kinds of food, from a lemon cheesecake to a spider, and devouring flies, caterpillars, and humble bees; yet there were some caterpillars and moths which they would seize only to drop immediately. Among these the principal were the caterpillar of the Magpie moth (*Abraxas grossulariata*) and the perfect six spot Burnet moth (*Anthrocera filipendulæ*). These would be first seized but invariably dropped in disgust, and afterwards left unmolested. Subsequently frogs were kept and fed with caterpillars from the garden, but two of these—that of the before-mentioned Magpie moth, and that of the *V.* moth (*Halia wavaria*), which is green with conspicuous white or yellow stripes and black spots—were constantly rejected. When these species were first offered, the frogs sprang at them eagerly and licked them into their mouths; no sooner, however, had they done so than they seemed to be aware of the mistake that they had made, and sat with gaping mouths, rolling their tongues about until they had got quit of the nauseous morsels. With spiders the same thing occurred. These two caterpillars were repeatedly put into the webs both of the geometrical and hunting spiders (*Epeira diadema* and *Lycosa* sp.), but in the former case they were cut out and allowed to drop; in the latter, after disappearing in the jaws of their captor down his dark silken funnel, they invariably reappeared, either from below or else taking long strides up the funnel again. has observed lizards fight with and finally devour humble bees, and a frog sitting on a bed of stone-crop leap up and catch the bees which flew over his head, and swallow them, in utter disregard of their stings. It is evident, therefore, that the possession of a disagreeable taste or odour is a more effectual protection to certain conspicuous caterpillars and moths, than would be even the possession of a sting. The observations of these two gentlemen supply a very remarkable confirmation of the hypothetical solution of the difficulty which I had given two years before. And as it is generally acknowledged that the best test of the truth and completeness of a theory is the power which it gives us of prevision, we may I think fairly claim this as a case in which the power of prevision has been successfully exerted, and therefore as furnishing a very powerful argument in favour of the truth of the theory of Natural Selection. Summary. I have now completed a brief, and necessarily very imperfect, survey of the various ways in which the external form and colouring of animals is adapted to be useful to them, either by concealing them from their enemies or from the creatures they prey upon. It has, I hope, been shown that the subject is one of much interest, both as regard a true comprehension of the place each animal fills in the economy of nature, and the means by which it is enabled to maintain that place; and also as teaching us how important a part is played by the minutest details in the structure of animals, and how complicated and delicate is the equilibrium of the organic world. My exposition of the subject having been necessarily somewhat lengthy and full of details, it will be as well to recapitulate its main points. There is a general harmony in nature between the colours of an animal and those of its habitation.

Arctic animals are white, desert animals are sandcoloured; dwellers among leaves and grass are green; nocturnal animals are dusky. These colours are not universal, but are very general, and are seldom reversed. Going on a little further, we find birds, reptiles, and insects, so tinted and mottled as exactly to match the rock, or bark, or leaf, or flower, they are accustomed to rest upon,—and thereby effectually concealed. Another step in advance, and we have insects which are formed as well as coloured so as exactly to resemble particular leaves, or sticks, or mossy twigs, or flowers; and in these cases very peculiar habits and instincts come into play to aid in the deception and render the concealment more complete. We now enter upon a new phase of the phenomena, and come to creatures whose colours neither conceal them nor make them like vegetable or mineral substances; on the contrary, they are conspicuous enough, but they completely resemble some other creature of a quite different group, while they differ much in outward appearance from those with which all essential parts of their organization show them to be really closely allied. They appear like actors or masqueraders dressed up and painted for amusement, or like swindlers endeavouring to pass themselves off for wellknown and respectable members of society. What is the meaning of this strange travestie? Does Nature descend to imposture or masquerade? We answer, she does not. Her principles are too severe. There is a use in every detail of her handiwork. The resemblance of one animal to another is of exactly the same essential nature as the resemblance to a leaf, or to bark, or to desert sand, and answers exactly the same purpose. In the one case the enemy will not attack the leaf or the bark, and so the disguise is a safeguard; in the other case it is found that for various reasons the creature resembled is passed over, and not attacked by the usual enemies of its order, and thus the creature that resembles it has an equally effectual safeguard. We are plainly shown that the disguise is of the same nature in the two cases, by the occurrence in the same group of one species resembling a vegetable substance, while another resembles a living animal of another group; and we know that the creatures resembled, possess an immunity from attack, by their being always very abundant, by their being conspicuous and not concealing themselves, and by their having generally no visible means of escape from their enemies; while, at the same time, the particular quality that makes them disliked is often very clear, such as a nasty taste or an indigestible hardness. Further examination reveals the fact that, in several cases of both kinds of disguise, it is the female only that is thus disguised; and as it can be shown that the female needs protection much more than the male, and that her preservation for a much longer period is absolutely necessary for the continuance of the race, we have an additional indication that the resemblance is in all cases subservient to a great purpose—the preservation of the species. In endeavouring to explain these phenomena as having been brought about by variation and natural selection, we start with the fact that white varieties frequently occur, and when protected from enemies show no incapacity for continued existence and increase. We know, further, that varieties of many other tints occasionally occur; and as “the survival of the fittest” must inevitably weed out those whose colours are prejudicial and preserve those whose colours are a safeguard, we require no other mode of accounting for the protective tints of arctic and desert animals. But this being granted, there is such a perfectly continuous and graduated series of examples of every kind of protective imitation, up to the most wonderful cases of what is termed “mimicry,” that we can find no place at which to draw the line, and say,—so far variation and natural selection will account for the phenomena, but for all the rest we require a more potent cause. The counter theories that have been proposed, that of the “special creation” of each imitative form, that of the action of “similar conditions of existence” for some of the cases, and of the laws of “hereditary descent and the reversion to ancestral forms” for others,—have all been shown to be beset with difficulties, and the two latter to be directly contradicted by some of the most constant and most remarkable of the facts to be accounted for. General deductions as to Colour in Nature.

The important part that "protective resemblance" has played in determining the colours and markings of many groups of animals, will enable us to understand the meaning of one of the most striking facts in nature, the uniformity in the colours of the vegetable as compared with the wonderful diversity of the animal world. There appears no good reason why trees and shrubs should not have been adorned with as many varied hues and as strikingly designed patterns as birds and butterflies, since the gay colours of flowers show that there is no incapacity in vegetable tissues to exhibit them. But even flowers themselves present us with none of those wonderful designs, those complicated arrangements of stripes and dots and patches of colour, that harmonious blending of hues in lines and bands and shaded spots, which are so general a feature in insects. It is the opinion of that we owe much of the beauty of flowers to the necessity of attracting insects to aid in their fertilisation, and that much of the development of colour in the animal world is due to "sexual selection," colour being universally attractive, and thus leading to its propagation and increase; but while fully admitting this, it will be evident from the facts and arguments here brought forward, that very much of the variety both of colour and markings among animals is due to the supreme importance of concealment, and thus the various tints of minerals and vegetables have been directly reproduced in the animal kingdom, and again and again modified as more special protection became necessary. We shall thus have two causes for the development of colour in the animal world, and shall be better enabled to understand how, by their combined and separate action, the immense variety we now behold has been produced. Both causes, however, will come under the general law of "Utility," the advocacy of which, in its broadest sense, we owe almost entirely to. A more accurate knowledge of the varied phenomena connected with this subject may not improbably give us some information both as to the senses and the mental faculties of the lower animals. For it is evident that if colours which please us also attract them, and if the various disguises which have been here enumerated are equally deceptive to them as to ourselves, then both their powers of vision and their faculties of perception and emotion, must be essentially of the same nature as our own—a fact of high philosophical importance in the study of our own nature and our true relations to the lower animals. Conclusion. Although such a variety of interesting facts have been already accumulated, the subject we have been discussing is one of which comparatively little is really known. The natural history of the tropics has never yet been studied on the spot with a full appreciation of "what to observe" in this matter. The varied ways in which the colouring and form of animals serve for their protection, their strange disguises as vegetable or mineral substances, their wonderful mimicry of other beings, offer an almost unworked and inexhaustible field of discovery for the zoologist, and will assuredly throw much light on the laws and conditions which have resulted in the wonderful variety of colour, shade, and marking which constitutes one of the most pleasing characteristics of the animal world, but the immediate causes of which it has hitherto been most difficult to explain. If I have succeeded in showing that in this wide and picturesque domain of nature, results which have hitherto been supposed to depend either upon those incalculable combinations of laws which we term chance or upon the direct volition of the Creator, are really due to the action of comparatively well-known and simple causes, I shall have attained my present purpose, which has been to extend the interest so generally felt in the more striking facts of natural history to a large class of curious but much neglected details; and to further, in however slight a degree, our knowledge of the subjection of the phenomena of life to the "Reign of Law." When the naturalist studies the habits, the structure, or the affinities of animals, it matters little to which group he especially devotes himself; all alike offer him endless materials for observation and research. But, for the purpose of investigating the phenomena of geographical distribution and of local, sexual, or general variation, the several groups differ greatly in their value and importance. Some have too limited a range, others are not sufficiently varied in specific forms, while, what is of most importance, many groups have not received that amount of attention over the whole region they inhabit, which could furnish materials sufficiently approaching to completeness to enable us to arrive at any accurate conclusions as to the phenomena they present as a whole.

It is in those groups which are, and have long been, favourites with collectors, that the student of distribution and variation will find his materials the most satisfactory, from their comparative completeness. Pre-eminent among such groups are the diurnal Lepidoptera or Butterflies, whose extreme beauty and endless diversity have led to their having been assiduously collected in all parts of the world, and to the numerous species and varieties having been figured in a series of magnificent works, from those of Cramer, the contemporary of Linnæus, down to the inimitable productions of our own Hewitson. [G] But, besides their abundance, their universal distribution, and the great attention that has been paid to them, these insects have other qualities that especially adapt them to elucidate the branches of inquiry already alluded to. These are, the immense development and peculiar structure of the wings, which not only vary in form more than those of any other insects, but offer on both surfaces an endless variety of pattern, colouring, and texture. The scales, with which they are more or less completely covered, imitate the rich hues and delicate surfaces of satin or of velvet, glitter with metallic lustre, or glow with the changeable tints of the opal. This delicately painted surface acts as a register of the minutest differences of organization—a shade of colour, an additional streak or spot, a slight modification of outline continually recurring with the greatest regularity and fixity, while the body and all its other members exhibit no appreciable change. The wings of Butterflies, as Mr. Bates has well put it, "serve as a tablet on which Nature writes the story of the modifications of species;" they enable us to perceive changes that would otherwise be uncertain and difficult of observation, and exhibit to us on an enlarged scale the effects of the climatal and other physical conditions which influence more or less profoundly the organization of every living thing. A proof that this greater sensibility to modifying causes is not imaginary may, I think, be drawn from the consideration, that while the Lepidoptera as a whole are of all insects the least essentially varied in form, structure, or habits, yet in the number of their specific forms they are not much inferior to those orders which range over a much wider field of nature, and exhibit more deeply seated structural modifications. The Lepidoptera are all vegetable-feeders in their larva-state, and suckers of juices or other liquids in their perfect form. In their most widely separated groups they differ but little from a common type, and offer comparatively unimportant modifications of structure or of habits. The Coleoptera, the Diptera, or the Hymenoptera, on the other hand, present far greater and more essential variations. In either of these orders we have both vegetable and animal-feeders, aquatic, and terrestrial, and parasitic groups. Whole families are devoted to special departments in the economy of nature. Seeds, fruits, bones, carcases, excrement, bark, have each their special and dependent insect tribes from among them; whereas the Lepidoptera are, with but few exceptions, confined to the one function of devouring the foliage of living vegetation. We might therefore anticipate that their species—population would be only equal to that of sections of the other orders having a similar uniform mode of existence; and the fact that their numbers are at all comparable with those of entire orders, so much more varied in organization and habits, is, I think, a proof that they are in general highly susceptible of specific modification. Question of the rank of the Papilionidæ. The Papilionidæ are a family of diurnal Lepidoptera which have hitherto, by almost universal consent, held the first rank in the order; and though this position has recently been denied them, I cannot altogether acquiesce in the reasoning by which it has been proposed to degrade them to a lower rank. In Mr. Bates's most excellent paper on the Heliconidæ, (published in the *Transactions of the Linnæan Society*, vol. xxiii., p. 495) he claims for that family the highest position, chiefly because of the imperfect structure of the fore legs, which is there carried to an extreme degree of abortion, and thus removes them further than any other family from the Hesperiidæ and Heterocera, which all have perfect legs. Now it is a question whether any amount of difference which is exhibited merely in the imperfection or abortion of certain organs, can establish in the group exhibiting it a claim to a high grade of organization, still less can this be allowed when another group along with perfection of structure in the same organs, exhibits modifications peculiar to it, together with the possession of an organ which in the remainder of the order is altogether wanting.

This is, however, the position of the Papilionidæ. The perfect insects possess two characters quite peculiar to them. in his "Genera of Diurnal Lepidoptera," says, "The Papilionidæ may be known by the apparently four-branched median nervule and the spur on the anterior tibiæ, characters found in no other family." The four-branched median nervule is a character so constant, so peculiar, and so well marked, as to enable a person to tell, at a glance at the wings only of a butterfly, whether it does or does not belong to this family; and I am not aware that any other group of butterflies, at all comparable to this in extent and modifications of form, possesses a character in its neuration to which the same degree of certainty can be attached. The spur on the anterior tibiæ is also found in some of the Hesperidæ, and is therefore supposed to show a direct affinity between the two groups: but I do not imagine it can counterbalance the differences in neuration and in every other part of their organization. The most characteristic feature of the Papilionidæ, however, and that on which I think insufficient stress has been laid, is undoubtedly the peculiar structure of the larvæ. These all possess an extraordinary organ situated on the neck, the wellknown Y-shaped tentacle, which is entirely concealed in a state of repose, but which is capable of being suddenly thrown out by the insect when alarmed. When we consider this singular apparatus, which in some species is nearly half an inch long, the arrangement of muscles for its protrusion and retraction, its perfect concealment during repose, its blood-red colour, and the suddenness with which it can be thrown out, we must, I think, be led to the conclusion that it serves as a protection to the larva, by startling and frightening away some enemy when about to seize it, and is thus one of the causes which has led to the wide extension and maintained the permanence of this now dominant group. Those who believe that such peculiar structures can only have arisen by very minute successive variations, each one advantageous to its possessor, must see, in the possession of such an organ by one group, and its complete absence in every other, a proof of a very ancient origin and of very long-continued modification. And such a positive structural addition to the organization of the family, subserving an important function, seems to me alone sufficient to warrant us in considering the Papilionidæ as the most highly developed portion of the whole order, and thus in retaining it in the position which the size, strength, beauty, and general structure of the perfect insects have been generally thought to deserve. In paper on "Mimetic Analogies among African Butterflies," in the Transactions of the Linnæan Society, for he has argued strongly in favour of views as to the higher position of the Danaidæ and the lower grade of the Papilionidæ, and has adduced, among other facts, the undoubted resemblance of the pupa of *Parnassius*, a genus of Papilionidæ, to that of some Hesperidæ and moths. I admit, therefore, that he has proved the Papilionidæ to have retained several characters of the nocturnal Lepidoptera which the Danaidæ have lost, but I deny that they are therefore to be considered lower in the scale of organization. Other characters may be pointed out which indicate that they are farther removed from the moths even than the Danaidæ. The club of the antennæ is the most prominent and most constant feature by which butterflies may be distinguished from moths, and of all butterflies the Papilionidæ have the most beautiful and most perfectly developed clubbed antennæ. Again, butterflies and moths are broadly characterised by their diurnal and nocturnal habits respectively, and the Papilionidæ, with their close allies the Pieridæ, are the most pre-eminently diurnal of butterflies, most of them lovers of sunshine, and not presenting a single crepuscular species. The great group of the Nymphalidæ, on the other hand (in which includes the Danaidæ and Heliconidæ as sub-families), contains an entire sub-family (Brassolidæ) and a number of genera, such as *Thaumantis*, *Zeuxidia*, *Pavonia*, &c., of crepuscular habits, while a large proportion of the Satyridæ and many of the Danaidæ are shade-loving butterflies. This question, of what is to be considered the highest type of any group of organisms, is one of such general interest to naturalists that it will be well to consider it a little further, by a comparison of the Lepidoptera with some groups of the higher animals. argument, that the lepidopterous type, like that of birds, being pre-eminently aërial, "therefore a diminution of the ambulatory organs, instead of being a sign of inferiority, may very possibly indicate a higher, because a more thoroughly aërial form," is certainly unsound, for it would imply that the most aërial of birds (the swift and the frigate-birds, for example) are the highest in the scale of bird-organization, and the more so on account of their feet being very ill adapted for walking.

But no ornithologist has ever so classed them, and the claim to the highest rank among birds is only disputed between three groups, all very far removed from these. They are—The Falcons, on account of their general perfection, their rapid flight, their piercing vision, their perfect feet armed with retractile claws, the beauty of their forms, and the ease and rapidity of their motions; The Parrots, whose feet, though ill-fitted for walking, are perfect as prehensile organs, and which possess large brains with great intelligence, though but moderate powers of flight; and, The Thrushes or Crows, as typical of the perching birds, on account of the well-balanced development of their whole structure, in which no organ or function has attained an undue prominence. Turning now to the Mammalia, it might be argued that as they are preeminently the terrestrial type of vertebrates, to walk and run well is essential to the typical perfection of the group; but this would give the superiority to the horse, the deer, or the hunting leopard, instead of to the Quadrupeds. We seem here to have quite a case in point, for one group of Quadrupeds, the Lemurs, is undoubtedly nearer to the low Insectivora and Marsupials than the Carnivora or the Ungulata, as shown among other characters by the Opossums possessing a hand with perfect opposable thumb, closely resembling that of some of the Lemurs; and by the curious *Galeopithecus*, which is sometimes classed as a Lemur, and sometimes with the Insectivora. Again, the implacental mammals, including the Ornithodelphia and the Marsupials, are admitted to be lower than the placental series. But one of the distinguishing characters of the Marsupials is that the young are born blind and exceedingly imperfect, and it might therefore be argued that those orders in which the young are born most perfect are the highest, because farthest from the low Marsupial type. This would make the Ruminants and Ungulata higher than the Quadrupeds or the Carnivora. But the Mammalia offer a still more remarkable illustration of the fallacy of this mode of reasoning, for if there is one character more than another which is essential and distinctive of the class, it is that from which it derives its name, the possession of mammary glands and the power of suckling the young. What more reasonable, apparently, than to argue that the group in which this important function is most developed, that in which the young are most dependent upon it, and for the longest period, must be the highest in the Mammalian scale of organization? Yet this group is the Marsupial, in which the young commence suckling in a foetal condition, and continue to do so till they are fully developed, and are therefore for a long time absolutely dependent on this mode of nourishment. These examples, I think, demonstrate that we cannot settle the rank of a group by a consideration of the degree in which certain characters resemble or differ from those in what is admitted to be a lower group; and they also show that the highest group of a class may be more closely connected to one of the lowest, than some other groups which have developed laterally and diverged farther from the parent type, but which yet, owing to want of balance or too great specialization in their structure, have never reached a high grade of organization. The Quadrupeds afford a very valuable illustration, because, owing to their undoubtedly affinity with man, we feel certain that they are really higher than any other order of Mammalia, while at the same time they are more distinctly allied to the lowest groups than many others. The case of the Papilionidæ seems to me so exactly parallel to this, that, while I admit all the proofs of affinity with the undoubtedly lower groups of Hesperiidæ and moths, I yet maintain that, owing to the complete and even development of every part of their organization, these insects best represent the highest perfection to which the butterfly type has attained, and deserve to be placed at its head in every system of classification. Distribution of the Papilionidæ. The Papilionidæ are pretty widely distributed over the earth, but are especially abundant in the tropics, where they attain their maximum of size and beauty, and the greatest variety of form and colouring. South America, North India, and the Malay Islands are the regions where these fine insects occur in the greatest profusion, and where they actually become a not unimportant feature in the scenery. In the Malay Islands in particular, the giant Ornithopteræ may be frequently seen about the borders of the cultivated and forest districts, their large size, stately flight, and gorgeous colouring rendering them even more conspicuous than the generality of birds.

In the shady suburbs of the town of Malacca two large and handsome Papilios (Memnon and Nephelus) are not uncommon, flapping with irregular flight along the roadways, or, in the early morning, expanding their wings to the invigorating rays of the sun. In Amboyna and other towns of the Moluccas, the magnificent Deiphobus and Severus, and occasionally even the azure-winged Ulysses, frequent similar situations, fluttering about the orange-trees and flower-beds, or sometimes even straying into the narrow bazaars or covered markets of the city. In Java the golden-dusted Arjuna may often be seen at damp places on the roadside in the mountain districts, in company with Sarpedon, Bathycles, and Agamemnon, and less frequently the beautiful swallow-tailed Antiphates. In the more luxuriant parts of these islands one can hardly take a morning's walk in the neighbourhood of a town or village without seeing three or four species of Papilio, and often twice that number. No less than 130 species of the family are now known to inhabit the Archipelago, and of these ninety-six were collected by myself. Thirty species are found in Borneo, being the largest number in any one island, twenty-three species having been obtained by myself in the vicinity of Sarawak; Java has twenty-eight species; Celebes twenty-four, and the Peninsula of Malacca, twenty-six species. Further east the numbers decrease; Batchian producing seventeen, and New Guinea only fifteen, though this number is certainly too small, owing to our present imperfect knowledge of that great island. In estimating these numbers I have had the usual difficulty to encounter, of determining what to consider species and what varieties. The Malayan region, consisting of a large number of islands of generally great antiquity, possesses, compared to its actual area, a great number of distinct forms, often indeed distinguished by very slight characters, but in most cases so constant in large series of specimens, and so easily separable from each other, that I know not on what principle we can refuse to give them the name and rank of species. One of the best and most orthodox definitions is that of Pritchard, the great ethnologist, who says, that "separate origin and distinctness of race, evinced by a constant transmission of some characteristic peculiarity of organization," constitutes a species. Now leaving out the question of "origin," which we cannot determine, and taking only the proof of separate origin, "the constant transmission of some characteristic peculiarity of organization," we have a definition which will compel us to neglect altogether the amount of difference between any two forms, and to consider only whether the differences that present themselves are permanent. The rule, therefore, I have endeavoured to adopt is, that when the difference between two forms inhabiting separate areas seems quite constant, when it can be defined in words, and when it is not confined to a single peculiarity only, I have considered such forms to be species. When, however, the individuals of each locality vary among themselves, so as to cause the distinctions between the two forms to become inconsiderable and indefinite, or where the differences, though constant, are confined to one particular only, such as size, tint, or a single point of difference in marking or in outline, I class one of the forms as a variety of the other. I find as a general rule that the constancy of species is in an inverse ratio to their range. Those which are confined to one or two islands are generally very constant. When they extend to many islands, considerable variability appears; and when they have an extensive range over a large part of the Archipelago, the amount of unstable variation is very large. These facts are explicable on Mr. Darwin's principles. When a species exists over a wide area, it must have had, and probably still possesses, great powers of dispersion. Under the different conditions of existence in various portions of its area, different variations from the type would be selected, and, were they completely isolated, would soon become distinctly modified forms; but this process is checked by the dispersive powers of the whole species, which leads to the more or less frequent intermixture of the incipient varieties, which thus become irregular and unstable. Where, however, a species has a limited range, it indicates less active powers of dispersion, and the process of modification under changed conditions is less interfered with. The species will therefore exist under one or more permanent forms according as portions of it have been isolated at a more or less remote period.

What is commonly called variation consists of several distinct phenomena which have been too often confounded. I shall proceed to consider these under the heads of—simple variability; polymorphism; local forms; co-existing varieties; races or subspecies; and 6th, true species. Simple variability.—Under this head I include all those cases in which the specific form is to some extent unstable. Throughout the whole range of the species, and even in the progeny of individuals, there occur continual and uncertain differences of form, analogous to that variability which is so characteristic of domestic breeds. It is impossible usefully to define any of these forms, because there are indefinite gradations to each other form. Species which possess these characteristics have always a wide range, and are more frequently the inhabitants of continents than of islands, though such cases are always exceptional, it being far more common for specific forms to be fixed within very narrow limits of variation. The only good example of this kind of variability which occurs among the Malayan Papilionidæ is in *Papilio Severus*, a species inhabiting all the islands of the Moluccas and New Guinea, and exhibiting in each of them a greater amount of individual difference than often serves to distinguish well-marked species. Almost equally remarkable are the variations exhibited in most of the species of Ornithoptera, which I have found in some cases to extend even to the form of the wing and the arrangement of the nervures. Closely allied, however, to these variable species are others which, though differing slightly from them, are constant and confined to limited areas. After satisfying oneself, by the examination of numerous specimens captured in their native countries, that the one set of individuals are variable and the others are not, it becomes evident that by classing all alike as varieties of one species we shall be obscuring an important fact in nature; and that the only way to exhibit that fact in its true light is to treat the invariable local form as a distinct species, even though it does not offer better distinguishing characters than do the extreme forms of the variable species. Cases of this kind are the Ornithoptera Priamus, which is confined to the islands of Ceram and Amboyna, and is very constant in both sexes, while the allied species inhabiting New Guinea and the Papuan Islands is exceedingly variable; and in the island of Celebes is a species closely allied to the variable *P. Severus*, but which, being exceedingly constant, I have described as a distinct species under the name of *Papilio Pertinax*. Polymorphism or dimorphism.—By this term I understand the coexistence in the same locality of two or more distinct forms, not connected by intermediate gradations, and all of which are occasionally produced from common parents. These distinct forms generally occur in the female sex only, and their offspring, instead of being hybrids, or like the two parents, appear to reproduce all the distinct forms in varying proportions. I believe it will be found that a considerable number of what have been classed as varieties are really cases of polymorphism. Albinoism and melanism are of this character, as well as most of those cases in which well-marked varieties occur in company with the parent species, but without any intermediate forms. If these distinct forms breed independently, and are never reproduced from a common parent, they must be considered as separate species, contact without intermixture being a good test of specific difference. On the other hand, intercrossing without producing an intermediate race is a test of dimorphism. I consider, therefore, that under any circumstances the term "variety" is wrongly applied to such cases. The Malayan Papilionidæ exhibit some very curious instances of polymorphism, some of which have been recorded as varieties, others as distinct species; and they all occur in the female sex. *Papilio Memnon* is one of the most striking, as it exhibits the mixture of simple variability, local and polymorphic forms, all hitherto classed under the common title of varieties. The polymorphism is strikingly exhibited by the females, one set of which resemble the males in form, with a variable paler colouring; the others have a large spatulate tail to the hinder wings and a distinct style of colouring, which causes them closely to resemble *P. Coon*, a species having the two sexes alike and inhabiting the same countries, but with which they have no direct affinity. The tailless females exhibit simple variability, scarcely two being found exactly alike even in the same locality. The males of the island of Borneo exhibit constant differences of the under surface, and may therefore be distinguished as a local form, while the continental specimens, as a whole, offer such large and constant differences from those of the islands, that I am inclined to separate them as a distinct species, to which the name *P. Androgeus* (Cramer) may be applied.